\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Code: 5SC02mTC2
Subject Name: Partial Differential Equations
Course Name: M.Sc. (Mathematics)
Date: 20/5/2015
Semester: II
Marks: 70
Time: 10:30 TO 01:30

Instructions:

1) Attempt all Questions in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

SECTION - I

Q-1 (a) Solve: $r+6 s+9 t=0$.
(b) Classify region in which equation $y(x+y)(r-s)-x p-y q=0$ is elliptic.
(c) Write the equation into $D \& D^{\prime}$ form: $2 x r-3 p q^{2}+r t-5 s^{2}=0$
(d) Find order and degree of the equation $5 s^{2}-4 r^{3}=x y p$.

Q-2 (a) a) Let $\left(\alpha D+\beta D^{\prime}+\gamma\right)^{n}$ be a factor of $F\left(D, D^{\prime}\right)$ and $\alpha \neq 0$, then prove that

$$
u=e^{-\frac{\gamma x}{\alpha}} \sum_{s=1}^{n} x^{s-1} \phi_{s}(\beta x-\alpha y)
$$

Is a solution of $F\left(D, D^{\prime}\right) z=0$.
(b) Reduce the equation $r+2 s+t=0$ to canonical form and hence solve it.

Q-2 (a) Solve: $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \sin x$
(b) Classify and Reduce the equation $r=x^{2} t$ to canonical form.

Q-3 (a) Eliminate the arbitrary functions and obtained a partial differential equation

$$
\begin{aligned}
& \text { i) } z=f(x y)+g\left(\frac{x}{y}\right) \\
& \text { ii) } z=f(x+5 y)+g(x-5 y)
\end{aligned}
$$

(b) Solve:

$$
\begin{align*}
& \text { i) }\left(D^{3}-3 D^{2} D^{\prime}+2 D D^{\prime 2}\right) z=0 \tag{07}\\
& \text { ii) } 25 r-40 s+16 t=0
\end{align*}
$$

Q-3 (a) Prove that $F\left(D, D^{\prime}\right)\left[e^{a x+b y} g(x, y)\right]=e^{a x+b y}\left[F\left(D+a, D^{\prime}+b\right] g(x, y)\right.$, Where a and b are constants.

(b) Find the general solution of $\left(D^{3}-2 D^{2} D^{\prime}\right) z=2 e^{2 x}+3 x^{2} y$.

SECTION - II

Q-4 (a) Verify $u=x^{2}-y^{2}$ is solution of two dimension Laplace equation.
(b) Write the wave equation in cylindrical coordinate system.
(c) Write Dirichlet problem for a Circle.
(d) The poisson Integral formula can be obtained from Neumann BVP. Determine whether the statement is true or false.

Q-5 (a) Solve interior Dirichlet problem for a function $\phi=\phi(r, \theta)$ for a circle and show that solution is of the form $\phi(r, \theta)=\sum_{n=0}^{\infty} r^{n}\left(A_{n} \cos n \theta+b_{n} \sin n \theta\right)$, With A_{n}, B_{n} constants.
(b) Solve: $\left(x^{2} D^{2}-y^{2} D^{\prime 2}+x D-y D^{\prime}\right) z=\log x$.

OR

Q-5 (a) Using Monge's method, solve the equation $x^{2} r+2 x y s+y^{2} t=0$.
(b) What is equipotential surface? Show that the surfaces $x^{2}+y^{2}+z^{2}=c$ can form an equipotential family of surfaces, and find the general form of the potential function.

Q-6 (a) Solve $\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}-\frac{1}{k} \frac{\partial \psi}{\partial t}=0$, by method of separation variable and show that solution is $\psi(x, y, z, t)=e^{ \pm\left(l x+m y+\gamma z+\alpha^{2} k t\right)}$ where l, m, γ, α are constant with $l^{2}+m^{2}+\gamma^{2}=\alpha^{2}$.
(b) Using Monge's method, solve the equation $3 s-2\left(r t-s^{2}\right)=2$.

OR
Q-6 (a) State and prove Harnack's theorem
(b) Solve: $x^{2} \frac{\partial^{2} z}{\partial x^{2}}-y^{2} \frac{\partial^{2} z}{\partial y^{2}}=x^{2} y$

